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Using random forests to
study physics graduate
school admissions

Nicholas T. Young

Center for Academic Innovation, University of Michigan

ACADEMIC INNOVATION

— \__/ ¥ @NickYoungPER



https://bit.ly/Young_PERC2022

|
|\ Getthe slides: https://bit.ly/Young PERC2022 >

N

ACADEMIC INNOVATION

UNIVERSITY OF MICHIGAN

—  \__/ W @NickYoungPER



https://bit.ly/Young_PERC2022

|
|\ Get the slides: https://bit.ly/Young PERC2022 >

N

Dichotomous keys

Vertebrate Classes
Has fur No fur

No feathers Feathers
1

Mammals

External fertilisation Internal fertilisation

Gills in adult No gills in adults Birds

i Reptiles

Fish Amphibians

Source: BioNinja
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Decision trees
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Decision tree example

SHOULD | ATTEND
THIS COMMITTEE

MEETING?
Am | on the
I— committee?_|
Attending Are there free
donuts?
o K
Is the topic of Attending!
interest?

e T v

Attending Don't attend
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The random forest

Run 1 Run2 Run3 Run4 Runb5

V1 V3 V1 V3 V2
V2 V4 V2 V5 V4

V3 V7 Vo6 V7 V5
V4 V8 V8 V9 Vo6
V5 V9 V10 V10 V8
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The random forest
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Why use Random Forest

e No assumptions on the shape of the data
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Why use Random Forest

e No assumptions on the shape of the data
e Scaling of continuous variables is irrelevant
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Why use Random Forest

e No assumptions on the shape of the data
e Scaling of continuous variables is irrelevant
e Interested in predicting outcomes
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What Random Forest cannot do

e Be a magic solution to the problem
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Let’s try it out!
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Data
GRE scores
GPA

Undergrad school
Research interest

N=512 applications
2014-2017
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The confusion matrix

Model predicts

True False

What the true  True | N7 Nte
answer is

False | Ngt Nee
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The confusion matrix

Model predicts

True False

What the true  True | N7 Nte
answer is

False | Ngt Nee

Npr + Npp

Accuracy =
Y Nrr + Npp + Npr + Npp
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Receiver Operating Characteristic (ROC) Curve

1.004

0.751

True Positive Rate
o
[4)]
o

0.251

0.0
8.00 0.25 0.50 0.75 1.00
False Positive Rate
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Results

All Variables
Average Testing Accuracy:

75.6% £ 0.6%
Null accuracy: 52.7%

Average Testing
Area Under the Curve (AUQ):
0.756 + 0.006

Representative Run

Is applicant admitted to
the physics graduate
program?

Actual Decision

Not Admitted

Admitted
Model Not 40.3% 14.9%
Prediction Admitted
Admitted 9.1% 35.7%
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Use variable importance to determine what is
useful in making a prediction <
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1.00-

0.751

0.501

True Positive Rate

0.251

0.0
8.00 0.25 0.50 0.75
False Positive Rate

Shuffle a variable ~ ———» observe change in some metric (e.g. AUC)
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Results

All Variables
Average Testing Accuracy:

75.6% + 0.6%
Null accuracy: 52.7%

Average Testing
Area Under the Curve (AUQ):
0.756 + 0.006

Physics GRE Score1
Quantitative GRE score 1
Grade Point Average 1
Verbal GRE score{
Proposed Research Area

Year of applying

Feature

Writing GRE score 1

Size of UG physics program, bach{
Region of UG program

Highest physics degree offered
Attended a MSI

Attended a public institution
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How do we know what matters?
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Results

All Variables
Average Testing Accuracy:

75.6% + 0.6%
Null accuracy: 52.7%

Average Testing
Area Under the Curve (AUQ):
0.756 + 0.006

Only Selected Variables
Average Accuracy:

75.4% + 0.6%

Average Area Under the Curve:
.754 + 0.006

Physics GRE Score 1
Quantitative GRE score 1
Grade Point Average 1
Verbal GRE score{
Proposed Research Area

Year of applying

Feature

*__ +--------ll|
N

Writing GRE score 1

Size of UG physics program, bach{
Region of UG program

Highest physics degree offered
Attended a MSI

Attended a public institution
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Size of UG physics program PhD

Barron Selectivity |
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Rubrie-based holistic review represents a change from traditional graduate admissions
approaches
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Recap

e Random forestis a good technique if you know the outcome of your data,
the data has a complex relationship to outcome (non-linear), and you are
interested in predicting the outcome
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Recap

e Random forestis a good technique if you know the outcome of your data,
the data has a complex relationship to outcome (non-linear), and you are

interested in predicting the outcome
e (Can also determine what features are most predictive of the outcome
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Recap
(¢

e Random forestis a good technique if you know the outcome of your data,
the data has a complex relationship to outcome (non-linear), and you are
interested in predicting the outcome

e (Can also determine what features are most predictive of the outcome

e Will always get an answer; want to make sure it is a reasonable answer
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Recap

e Random forestis a good technique if you know the outcome of your data,
the data has a complex relationship to outcome (non-linear), and you are
interested in predicting the outcome

e (Can also determine what features are most predictive of the outcome

e Will always get an answer; want to make sure it is a reasonable answer
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Get in touch: ntyoung@umich.edu
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® Zabriskie, C., Yang, J., DeVore, S., & Stewart, J. (2019). Using machine learning to predict physics course
outcomes. Physical Review Physics Education Research, 152), 020120.
https://doi.org/10.1103/PhysRevPhysEducRes.15.020120

| ACADEMIC INNOVATION

UNIVERSITY OF MICHIGAN

— \__/ ¥ @NickYoungPER


https://bit.ly/Young_PERC2022
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1214/ss/1009213726
https://doi.org/10.1186/1471-2105-14-119
https://doi.org/10.1186/1471-2105-8-25
https://doi.org/10.1103/PhysRevPhysEducRes.15.010114
https://doi.org/10.1103/PhysRevPhysEducRes.15.020120

