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Decision trees

https://bit.ly/Young_PERC2022


@NickYoungPER

Get the slides: https://bit.ly/Young_PERC2022

@NickYoungPER

Decision tree example
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The random forest

Run 1 Run 2 Run 3 Run 4 Run 5

V1 V3 V1 V3 V2

V2 V4 V2 V5 V4

V3 V7 V6 V7 V5

V4 V8 V8 V9 V6

V5 V9 V10 V10 V8
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The random forest

Pass

Fail
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Why use Random Forest

● No assumptions on the shape of the data
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Why use Random Forest

● No assumptions on the shape of the data

● Scaling of continuous variables is irrelevant
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Why use Random Forest

● No assumptions on the shape of the data

● Scaling of continuous variables is irrelevant

● Interested in predicting outcomes
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What Random Forest cannot do

● Be a magic solution to the problem
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Let’s try it out!
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Data

14

GRE scores

GPA

Undergrad school

Research interest

N=512 applications

2014-2017
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The confusion matrix

Model predicts

True False

What the true 

answer is

True NTT NTF

False NFT NFF
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The confusion matrix

Model predicts

True False

What the true 

answer is

True NTT NTF

False NFT NFF

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑇𝑇 + 𝑁𝐹𝐹

𝑁𝑇𝑇 + 𝑁𝑇𝐹 + 𝑁𝐹𝑇 + 𝑁𝐹𝐹
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Receiver Operating Characteristic (ROC) Curve
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Results

18

All Variables
Average Testing Accuracy:
75.6% ± 0.6%
Null accuracy: 52.7%

Average Testing
Area Under the Curve (AUC):
0.756 ± 0.006

Is applicant admitted to 
the physics graduate 
program?

Actual Decision

Not 
Admitted

Admitted

Model 
Prediction

Not 
Admitted

40.3% 14.9%

Admitted 9.1% 35.7%

Representative Run
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Use variable importance to determine what is 
useful in making a prediction
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Shuffle a variable observe change in some metric (e.g. AUC) Order by the change in the metric
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Results
All Variables
Average Testing Accuracy:
75.6% ± 0.6%
Null accuracy: 52.7%

Average Testing
Area Under the Curve (AUC):
0.756 ± 0.006
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How do we know what matters?
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Only Selected Variables
Average Accuracy:
75.4% ± 0.6%
Average Area Under the Curve:
.754 ± 0.006

Results
All Variables
Average Testing Accuracy:
75.6% ± 0.6%
Null accuracy: 52.7%

Average Testing
Area Under the Curve (AUC):
0.756 ± 0.006
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Learn more

arxiv:2112.06886
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Recap

● Random forest is a good technique if you know the outcome of your data, 

the data has a complex relationship to outcome (non-linear), and you are 

interested in predicting the outcome
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● Random forest is a good technique if you know the outcome of your data, 

the data has a complex relationship to outcome (non-linear), and you are 

interested in predicting the outcome

● Can also determine what features are most predictive of the outcome
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Recap

● Random forest is a good technique if you know the outcome of your data, 

the data has a complex relationship to outcome (non-linear), and you are 

interested in predicting the outcome

● Can also determine what features are most predictive of the outcome

● Will always get an answer; want to make sure it is a reasonable answer
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Recap

● Random forest is a good technique if you know the outcome of your data, 

the data has a complex relationship to outcome (non-linear), and you are 

interested in predicting the outcome

● Can also determine what features are most predictive of the outcome

● Will always get an answer; want to make sure it is a reasonable answer

Get in touch: ntyoung@umich.edu
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