
Prior work1 tells us random forest2,3 will find 
this feature more predictive than this feature

even if both features are created to be equally 
predictive!

This is a problem because PER data is more like the right 
image than the left image.

However, that simulation study1 didn’t use
• data combinations typical of PER
• imbalanced outcomes
• newer feature selection approaches4

Let’s try it ourselves!

Our data
• 3 levels of predictiveness: Odds Ratio (OR) = {3, 1.5, 1}
• 5 feature imbalances: 50/50, 60/40, 75/25, 90/10, 95/5
• 5 continuous features: 2 informative, 3 noise
• 5 outcome imbalances: 50/50, 60/40, 70/30, 80/20, 90/10
• 3 sample sizes: N= {100, 1,000, 10,000}
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We might be introducing false negatives into our results due to our data. 
Therefore, researchers should report feature and outcome imbalance in their publications.

Lower-imbalance features rank higher than 
higher-imbalance features for identical OR. 
• Results independent of sample size and outcome imbalance
• Feature selection approaches for imbalanced data don’t 

offer an improvement over standard approaches.
• Many predictive features aren’t detected for N ≤ 1000.

Logistic regression also has an imbalance bias.
• Confidence intervals can span orders of magnitude for 

imbalanced features.
• Problem is worse for highly imbalanced outcomes.
• Penalized regression methods such as Firth5 and Logf6 can 

help for smaller samples sizes.

This bias is observed in real 
PER data.
• Logf considerably shrinks 

confidence interval for RaceBlack.
• RaceMulti, RaceBlack, RaceLatinx 

have around the same odds ratio 
but only RaceLatinx (least 
imbalanced) is different from noise 
when using AUC permutation 
importance.

140 Applicants

41% rejected

21% women

19% Latinx

13% Asian

4% Black

4% Multiracial

School 1

1Boulesteix A.L, Bender A., Bermejo J. L., Strobl C., Random forest Gini importance favours SNPs with large 
minor allele frequency: impact, sources and recommendations, Briefings in Bioinformatics, Volume 13, Issue 
3, May 2012, Pages 292–304.
2Breiman, L. Random Forests. Machine Learning 45, 5–32 (2001).
3Strobl, C., Boulesteix, A. L., Zeileis, A., & Hothorn, T. (2007). Bias in random forest variable importance 
measures: illustrations, sources and a solution. BMC bioinformatics, 8, 25. 

4Janitza, S., Strobl, C., & Boulesteix, A. L. (2013). An AUC-based permutation variable importance measure for 
random forests. BMC bioinformatics, 14, 119. 
5Firth, D. (1993). Bias Reduction of Maximum Likelihood Estimates. Biometrika, 80(1), 27-38. 
6Greenland, S., and Mansournia, M. A. (2015) Penalization, bias reduction, and default priors in logistic and 
related categorical and survival regressions. Statist. Med., 34: 3133– 3143.

Funding provided by Michigan State University’s College of Natural Science & the Lappan-Phillips Foundation. Data provided by the Inclusive Graduate Education Network.

https://doi.org/10.1093/bib/bbr053
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1186/1471-2105-8-25
https://doi.org/10.1186/1471-2105-14-119
https://doi.org/10.2307/2336755
https://doi.org/10.1002/sim.6537
http://www.igenetwork.org/

