

Using Machine Learning to Predict Integrating Computation into Physics Courses

Background

Computation

- Is central to the study of modern science & engineering
- Can help students develop research skills, scientific ways of thinking, & deeper conceptual understanding¹
- Calls to include computation in physics are both national² and locally emergent³
- Goal: Determine factors that are predictive of whether faculty include computation in their physics courses

Methodology

Survey

- AIP survey distributed to a random sample of all US physics faculty in fall 2016
- Contains binary responses, Likert scale selections, and free response questions
- Areas of focus:
- types of computational instruction
- institutional resources and supports
- faculty perceptions and motivations
- perceived barriers
- Responses from 1246 faculty and 357 unique departments

Sample

- Use responses from 693 faculty on 44 items in this study
- Complexity of data and characterizing the analysis as a categorization problem suggests machine learning, e.g., random forests⁴

The Random Forest Algorithm ^{4,5}

Decision trees

- Segregate data based on binary features building rules to predict categories based on features⁶
- Overfit data: poorly predict because rules based on single decision tree instance

Random Forest

- Combine decision tress and get better results! • Good models add up; bad models cancel
- Important variables determined by changes to model when removing that variable^{7,8}

Co

Comp. ins. considered when alloc. res. for major -Comp. ins. considered when change. serv. course -Learned comp. in formal course -

tage	100 -	
ercent	75	
Vithin Group Perc	50	
in Gro	25	
With	0	D.
		Di
		Compu
Ε		Evno
		Expe
ntage	100	
erce	75	
/ithin Group Percentage	50	
n Gro	25	[
Withi	0	
		Assoc
C		
Г		Expe

Expe		F
	100	age
	75	Within Group Percentage
	50	oup Po
	25	in Gro
F	0	With

Nicholas T. Young¹, Marcos D. Caballero^{1,2,3}

¹Department of Physics and Astronomy, Michigan State University ²CREATE for STEM Institute, Michigan State University ³Department of Physics and Center for Computing in Science Education, University of Oslo

Results

Which factors are important? personally use comp

Actionable plans to increase comp. instruction

- Comp. can solve unsolved problems (learning) Comp. research attractive for funding -Comp. ins. considered for new hires -Learned comp. informally on-the-job
 - Comp. is used across science (learning)
- ered for pursuing grant funding
- Computing is important for undergrads
- -molovment status
- Use comp. for personal enrich omp. ins. considered for pursuing univ. funding Field of degreĕ
- Comp. focuses attention on modeling Comp. can solve unsolved problems (research)
- Comp. ins. considered when change. maj. course-Comp. ins. considered when alloc. res. for ind. courses-Department values teaching students comp **IBCU** status
 - Additional field of degree
 - Time of degree

0.02 0.04 0.06 0.00 Mean AUC Importance

Is the model a good one?

Accuracy score

• Percent of correctly predicted categories

Confusion matrix

- Visual representation comparing model predictions to what the data says **ROC curve**
- Illustrates diagnostic ability of the model in terms of false positive rate and true positive rate

Validation

• Ensure results do not change with different model parameters

Models were developed by training from 70% of the data and using 30% for testing.

o you teach		Data Says			
omputation?		No	Yes		
lodel redicts	No	43	12		
	Yes	35	118		
Accuracy: 0.774					

Average Accuracy: 0.774 ± 0.005 Average AUC: 0.838 ± 0.002

Accuracy and Area Under Curve values suggest a good model.

Does the model change if the parameters change?

Accuracy and AUC are approximately the same regardless of the number of trees or training fraction

Some variation in selected factors, but same factors are selected again and

CREATE for STEM Institute

Discussion & Conclusions

Faculty that teach computation tend to:

- Use computation in their research with students or some other way outside of the classroom
- Believe computation brings new physics and problems into the curriculum
- Teach at institutions that offer up to a physics bachelor's degree

Factors that do not appear to be predictive:

- Demographic factors
- How computation is viewed by department

Conclusion: Faculty treat teaching computation as an individual choice

Comments on Random Forest model:

- Unbalanced classes may produce low accuracy value
- Selected variables do show differences in distributions between those who do and do not have experience teaching computation.
- Model appears stable against variations in the parameters such as size of the forest and fraction of data used for training

Impacts: Useful for groups like PICUP working to increase use of computational instruction.

Acknowledgements

This work was generously supported by the National Science Foundation (DUE-1431776). Thanks to Laura Merner, Norman Chonacky, and Robert Hilborn for survey development and deployment. Thanks to John Aiken, Michelle Kuchera, and Tim McKay for their useful insights on the analysis.

References

¹ Chabay, Ruth, and Bruce Sherwood. "Computational physics in the introductory calculus-based course." American Journal of Physics 76.4 (2008): 307-313.

² AAPT Undergraduate Curriculum Task Force, AAPT Recommendations for Computational Physics in the Undergraduate Physics Curriculum, 2016

³ Caballero, Marcos D., and Steven J. Pollock. "A model for incorporating computation without changing the course: An example from middle-division classical mechanics." American Journal of Physics 82.3 (2014): 231-237.

⁴ Breiman, Leo. "Random forests." Machine learning 45.1 (2001): 5-32. ⁵Strobl, Carolin, et al. "Bias in random forest variable importance measures: Illustrations, sources and a solution." BMC Bioinformatics 8.1 (2007): 25.

⁶Rokach, Lior, and Oded Maimon. Data mining with decision trees: theory and applications. World scientific, 2014.

⁷Janitza et al. "An AUC-based permutation variable importance measure for random forests." BMC Bioinformatics 14:119 (2013) ⁸Diaz-Uriarte, Ramon and Sara Alvarez de Andres. "Gene selection and classification of microarray data using random forest." BMC informatics 7:3 (2006).